

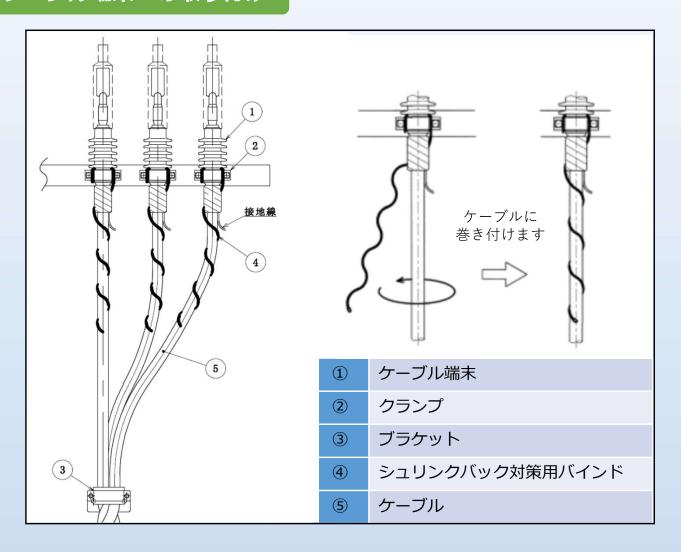
シュリンクバック対策用バインド

ケーブルに巻き付けて、シュリンクバックを抑制します。

特長

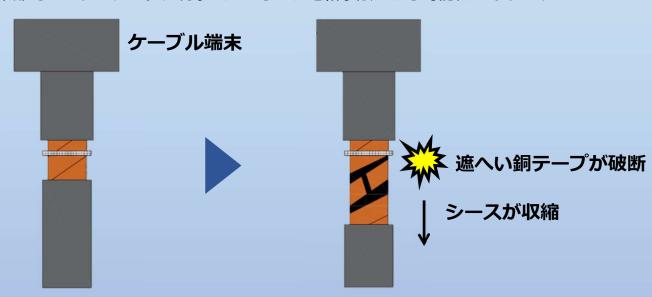
- ●取り付けスキルも工具も必要ありません。
- ●腕金などに引っ掛けてケーブルに巻き 付けるだけです。
- ●大がかりな工事は必要なく、既設のケーブル端末にあとづけで取り付けられます。
- ●100年のケーブル製造経験から生まれた シンプルならせん構造です。

種類


現地曲げタイプ	ケーブルサイズ (mm²)	全長 (mm)
	6.6kV CV 60	690
	6.6kV CV 100	725
	6.6kV CV 150	760
	6.6kV CV 200	790
	6.6kV CV 250	810
	6.6kV CV 325	845

フックタイプ	ケーブルサイズ (mm²)	全長 (mm)
	6.6kV CV 22	650
	6.6kV CV 38	670
	6.6kV CV 60	690
	6.6kV CV 150	760
	6.6kV CV 250	820
	6.6kV CV 400	890

性 能


項目	性能
初期性能	シースのスリップ量が5mm以下であること。(引張力:98N)
ヒートサイクル試験性能	スリップ量が20mm以下であり、ヒートサイクル後にケーブルを 解体したとき、遮へい銅テープに異常がないこと。
繰返し応力試験性能	スリップ量が20mm以下であり、各部に異常がないこと。

ケーブル端末への取り付け

シュリンクバックとは・・・

ケーブル製造時の残留応力が日射や通電により開放され、シースが収縮する事象です。 端末部でシュリンクバック現象が起こると、地絡事故に至る可能性があります。

